Researchers have developed a prototype cultured pork using a stable, gluten-free kafirin scaffold from red sorghum, offering a new, allergen-friendly approach to lab-grown meat.
Lab-grown meat is no longer a concept from science fiction. Cultured meats have been around for over a decade, and as of 2023, lab-grown chicken is even available in some U.S. restaurants. Now, with the use of plant-based scaffolds, the range of “clean meat” options is broadening. In a recent study published in the Journal of Agricultural and Food Chemistry, researchers developed a cultured pork prototype using a novel material: kafirin proteins extracted from red sorghum grain.
Cultured meats have emerged alongside plant-based meats as more ethical and environmentally friendly alternatives to eating animals. Manufacturing both types requires far less land and water, and the process emits fewer greenhouse gases during production. Unlike plant-based mimics, cultured meats use actual animal cells, but they are grown in a lab on porous protein scaffolds rather than obtained directly from an animal’s flesh.
A variety of materials, including wheat gluten, pea protein, and soy protein, have been used to create these supports. However, these water-soluble options require extra treatment steps or cause problems for those with gluten intolerances or allergies. To address that, Linzhi Jing, Dejian Huang, and colleagues proposed using kafirin — a protein found in sorghum grain — as a gluten-free, water-insoluble alternative protein for scaffolding on which to grow a prototype cultured pork.
Creating the Kafirin-Based Scaffold for Cultured Pork
The team extracted kafirin from red sorghum flour and constructed a porous, 3D protein scaffold by soaking sugar cubes in the kafirin solution. The proteins stuck to the sugar crystals, which were then dissolved using water, leaving behind a cube-shaped support structure. To make the prototype cultured meat, Jing, Huang, and colleagues introduced pork stem cells to the scaffold. After 12 days, they saw that the cells had readily attached to the kafirin and were differentiating into pork muscle and fat cells.
Compared to raw lean pork, the cultured pork contained more protein and saturated fat and fewer mono- and polyunsaturated fats. Researchers also found that red pigments from the sorghum provided the cultured meat with a pork-like color and some antioxidant properties. However, because the sorghum’s structural proteins were so stable, the cultured meat’s texture and color changed very little after boiling, making the raw and cooked versions look similar. The researchers say that additional work is needed to fine-tune the cultured pork’s nutritional and textural properties, but this study proves kafirin’s utility as a promising scaffold material for cultured meat products.
Reference: “Sorghum Prolamin Scaffolds-Based Hybrid Cultured Meat with Enriched Sensory Properties” by Lingshan Su, Linzhi Jing, Shunjiang Zeng, Caili Fu and Dejian Huang, 9 October 2024, Journal of Agricultural and Food Chemistry.
DOI: 10.1021/acs.jafc.4c06474
The authors acknowledge funding from the National University of Singapore (Suzhou) Research Institute Biomedical and Health Technology Platform and the Natural Science Youth Foundation of Jiangsu, China.