Chinese Scientists Unveil the World’s Most Powerful Sound Laser

Most Powerful Phonon Laser
The microsphere, levitated by the dual beam optical tweezer (green), is driven by the active optomechanical system (red) to generate nonlinear phonon lasers (colored waves). Meanwhile, the injected electrical signal, represented by the white lightning mark, acts as a simple but powerful way to enhance the quality of the nonlinear phonon laser, shown as the colored spectrum. Credit: Guangzong Xiao, Tengfang Kuang, Yutong He, Xinlin Chen, Wei Xiong, Xiang Han, Zhongqi Tan, Hui Luo, Hui Jing

Recent advancements in phonon laser technology, which utilizes sound waves rather than light, show promising new applications in medical imaging and deep-sea exploration.

A novel technique enhances these lasers by stabilizing and strengthening the sound waves, allowing for more precise and powerful outputs. This development not only improves existing uses in medical and underwater applications but also extends potential uses to material science and quantum computing.

Enhancing Phonon Laser Technology

Scientists in China have made a significant leap in developing lasers that use sound waves instead of light. These “phonon lasers” hold promise for advancements in medical imaging, deep-sea exploration, and other areas.

The new technique involves a tiny electronic nudge that dramatically enhances the power and precision of the sound waves produced by the laser. This paves the way for future devices that could utilize sound for a broader range of applications.

Enhanced Nonlinear Phonon Lasers With Wider Frequency Scope
The measured power spectrum (PSD) of phonons shows more than 3 orders enhancement in brightness and narrowed linewidth, revealing wide application scenarios covering audible and ultra-sound scope. Credit: Guangzong Xiao, Tengfang Kuang, Yutong He, Xinlin Chen, Wei Xiong, Xiang Han, Zhongqi Tan, Hui Luo, Hui Jing

Overcoming Previous Limitations

Previously, phonon lasers made from small objects suffered from weak and imprecise sound waves, limiting their usefulness. The new method overcomes this challenge by essentially “locking” the sound waves into a more stable and powerful state.

This breakthrough paves the way for powerful and precise phonon lasers suitable for real-world applications, such as medical imaging and deep-sea exploration. Phonon lasers can create more sensitive and less harmful medical imaging techniques, while deep-sea vehicles could implement improved communication and navigation.

Nonlinear Phonon Laser in Biomechanical Ultrasonics and Deep-Ocean Monitoring
The phonon laser boosts the phononics to coherent regime with wider frequency range, thus can achieve higher accuracy and further broaden the application scenarios, such as lesion identification of multiform organs and tissues, deep-sea detection of flora and fauna. Credit: Guangzong Xiao, Tengfang Kuang, Yutong He, Xinlin Chen, Wei Xiong, Xiang Han, Zhongqi Tan, Hui Luo, Hui Jing

Broader Impact and Future Prospects

Phonon lasers could also have applications in material science, quantum computing, and other fields.

This research represents a significant step forward in phonon laser development, potentially unlocking a range of new technologies.

Reference: “Giant enhancement of nonlinear harmonics of an optical-tweezer phonon laser” by Guangzong Xiao, Tengfang Kuang, Yutong He, Xinlin Chen, Wei Xiong, Xiang Han, Zhongqi Tan, Hui Luo and Hui Jing, 5 September 2024, eLight.
DOI: 10.1186/s43593-024-00064-8

Funding: National Natural Science Foundation of China, Science Fund for Distinguished Young Scholars of Hunan Province, Science and Technology Innovation Program of Hunan Province, Key Science and Technology Breakthrough Program of Hunan Province, Natural Science Foundation of Hunan Province