Physicist Explains the Tragic Implosion of OceanGate’s Titan Submersible

Carbon Fiber Breaking Illustration

The OceanGate Titan submersible, the first deep-sea vehicle with a hull made primarily from carbon fibers, recently imploded in the Atlantic Ocean, resulting in the loss of five crew members. Experts, including Arun Bansil, a distinguished professor of physics at Northeastern, are investigating the possibility that the vessel’s experimental carbon-fiber hull, constructed in a mere six weeks, might have been a key factor in the disaster.

The OceanGate Titan submersible imploded in the Atlantic Ocean, causing the death of five crew members. Investigations focus on the experimental carbon-fiber hull, a first in deep-sea vehicles, as a possible cause. While carbon-fiber composites offer advantages like light weight and high strength, their ability to withstand deep-sea pressures is not well understood, highlighting the need for further research and testing in such applications.

With the debris of the OceanGate Titan submersible now in the possession of authorities, investigators are hard at work piecing together (literally) what caused the vessel to implode in the Atlantic Ocean more than two weeks ago.

Northeastern Global News already spoke to Arun Bansil, university distinguished professor of physics at Northeastern, to try to gain a better understanding of what exactly might have happened all those fathoms beneath the surface, where the five Titan crew members died.

One potential explanation has been widely discussed: the vessel’s experimental carbon-fiber hull, which the company turned around in just six weeks, according to one report.

Northeastern Global News tapped Bansil again to provide a brief overview (and history) of the use of carbon-fiber materials in deep-sea watercraft. The conversation has been edited for brevity and clarity.

Arun Bansil

Arun Bansil, university distinguished professor of physics, poses for a portrait in the ISEC building. Credit: Photo by Matthew Modoono/Northeastern University

There’s been a lot of chatter about the Titan submersible’s carbon-fiber composition. Can you explain why carbon-fiber material might not hold up as well as titanium, aluminum, and steel under deep-ocean pressure?

For components requiring light weight and high strength, carbon fiber-based composites have been successfully developed for use in aerospace, automotive, sports, medical, and consumer industries.

When it comes to deep-sea applications, however, this is not the case, and steel, titanium, and aluminum are used widely for making pressure hulls.

Titan was the first deep-sea vehicle with a hull made mainly from carbon fibers. The ability of carbon fibers to withstand repeated cycles of stress, especially compressive stress, under deep-sea pressures is not well understood, making it difficult to design safe hulls based on carbon fibers.

The degrading effects of water absorption on the epoxy binding the carbon fibers in the composite should also be kept in mind in assessing the failure of Titan.

When did carbon fiber begin to be seen as a candidate material for these types of watercraft?

It seems that adventurist Steve Fossett started exploring the use of carbon fibers around 2000 for the hull of a one-person submersible to dive to the bottom of Challenger Deep, which is the deepest point in the Mariana Trench, at about 36,000 feet.

The submersible DeepFlight Challenger that Fossett commissioned has not been tested or deployed. Titan was the first deep-sea submersible with a carbon-fiber hull.

Why are companies experimenting with these new materials, and are there other alternatives that have shown promise?

New materials are the backbone on which transformative science and engineering advances are made. Carbon fibers offer many advantages over metals, such as high strength, lightweight and corrosion resistance.

Titan had made several dives to the Titanic shipwreck, and we should withhold judgment on the primary trigger for its implosion until the ongoing investigations are completed.

My guess is that researchers will eventually develop carbon-fiber-based materials for deep-sea applications, along with testing protocols for safe operation of the submersibles.

Read More: Physicist Explains How Titan’s “Catastrophic Implosion” Happened – And What It Meant for Those on Board